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A numerical study was performed to analyze steady-state natural convective heat transfer 
in rectangular enclosures vertically divided into a fluid-filled region and a fluid saturated 
porous region. The interface between the two regions was permeable, altowing the fluid 
to flow from one region to the other. The vertical boundaries of the enclosures were 
isothermal and the horizontal boundaries were adiabatic. The flow in the porous region 
was modeled using the Brinkman-extended Darcy’s law to account for no-slip at the 
walls and the interface. Numerical experiments were performed for different enclosure 
aspect ratios, Rayleigh numbers, Darcy numbers, thermal conductivity ratios and thicknesses 
of the porous region. The effects of the governing parameters on heat transfer were 
established. It was found that, when compared to the case where the fluid and porous 
regions were separated by an impermeable partition, heat transfer across the enclosure 
was higher. Also, for certain values of the governing parameters, heat transfer across the 
enclosure could be minimized by filling the enclosure partially with a porous material 
instead of filling it entirely. 
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Introduction 

Natural convection in enclosures has been studied exten- 
1 sively - I7 due to its applications in many engineering systems. 

In a recent study pertaining to thermal insulation applications, 
Tong and Subramanianis studied the effect of fitling a vertical 
rectangular enclosure partially with a porous medium. The 
porous and fluid regions were considered to be separated by 
an impermeable partition. It was found that there were con- 
ditions where heat transfer exhibited a minimum as the porous 
thickness was increased from xero to the enclosure width. 

The present work examines the case where there is no 
partition separating the fluid and porous regions. Such a 
situation arises in the use of unfaced fiberglass batts. The fluid 
flow characteristics in the enclosure are quite different from 
those for the previous easel’ as the fluid in one region can now 
flow into the other. Consequently, the rate of heat transfer 
across the enclosure can also be quite different. 

In a study motivated by an interest in material castings, 
Beckermann et al.” have also studied heat transfer in an 
enclosure containing a fluid-porous interface. They conducted 
a detailed analysis on the heat and fluid flow characteristics 
between the porous and fluid regions, but considered only the 
case for enclosures with an aspect ratio of 1. Since most 
insulation systems are tall and narrow, attention of the present 
work is focused on the cases with an aspect ratio of 5 or larger. 
The effect of the absence of an impermeable partition will be 
established by comparing the resutts to those presented by Tong 
and Subramanian.‘s Also, the question whether heat transfer 
can still be minimized as a function of the thickness of the 
porous region will be addressed. 

Mathematical formulation 

Figure 1 shows the geometry, boundary conditions and the 
coordinate system for the problem under consideration. The 
enclosure has a height L and a width d. The interface is 
permeable, allowing the fluid to flow from one region to the 
other. The porous medium is completely saturated with the 
fluid and is assumed to be macroscopically isotropic, homo- 
geneous,-and in local thermal equilibrium. The thermpphysical 
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Figure 1 Enclosure partially filled with a porous medium 
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properties of both the fluid and the porous medium are assumed 
constant except for the fluid density in the buoyancy term of 
the momentum equation. The fluid flow is assumed to be two- 
dimensional, steady-state, laminar, and incompressible. 

In the porous region Brinkman-extended Darcy's formulation 
is used so that the no-slip condition at the walls and interface 
can be satisfied. The convection terms are retained to account 
for the inertia of the fluid. The equations governing momentum 
and energy transfer can be written in dimensionless form as 

Porous region 

Up 0t~'~p + Vp ~'~p ~-- -- P_rr ~.~p "4- PrV2~p + RaPr 00p (1) 
OX OY Da aX 

VZ~p= --O~ (2) 

00F-~" V. 00p--V20p (3) 
Vp~-~ "0Y R= 
Fluid region 

Uf Oaf+ Vf ~ - - - V r  V'D.r + arRa 00r 
~X OY 0--X (4) 

V 2 ~,/f -~ ~ --~.f (5) 

U, 00, + V, 00f = VZOf (6) 
0X aY 

where V 2 is the Laplacian operator and the symbols are defined 
in the Notation. The assumption #p =/~xa has been invoked and 
the following dimensionless variables have been used in arriving 
at Equations 1 through 6 from their original dimensional form 

x d T-Tc 
r =  , 

upd Up=--, Vp =vpa, [.If =lIra, Vf -Ofd 
O~f O~f ~f ~f 

Rao = poll(Th- T=)Kd, Ra = PO~(K- T=)d 3 
/~ap p#f 

e r = ~  Da = ~ ,  
pal 

The dimensionless stream function and vorticity are defined as 

u=~, v= -°¢'  n ov ou v2 o 
O R '  = 

The boundary conditions are 

at X = 0  0p=l,  ~bp=0¢%=0, D~,=-VZ~bp 
OX 

0X 

00p 0~p 
at Y=O,A -~=~p=-~=O, f~p=-VZ~p f o r X < S  

a0f , 0~f 0 

where A=L/d and S----sial. At the interface, the following 
quantities evaluated in both the porous and fluid regions are 
matched: horizontal velocity, vertical velocity, shear stress, 
normal stress, temperature, and heat flux. Mathematically, 
these matching conditions can be expressed as 

0q, p 0g, f 
~P = ~ '  0X - ~X 

n~ = n, ,  on~ vp _ ock (7) 
OX Da OX 

~0p R 00f 
= 0 , ,  T ;  = ° 

N o t a t i o n  

A Aspect ratio of enclosure, L/d 
d Enclosure width 
Da Darcy number, rid 2 
0 Acceleration due to gravity 
k Thermal conductivity 
L Height of enclosure 
M1 Number of intervals in the porous region in 

the x direction 
M2 Number of intervals in the fluid region in the 

x direction 
N Number of intervals in the y direction 
Nu Nusselt number 
p Pressure 
Pr Prandtl number, i.~/p,~f 
R Rc in porous region; 1 in fluid region 
Re Ratio of kf to kp 
Ra Rayleigh number, p@~f(Tf- T=)d3/#faf 
Rao Modified Rayleigh number, RaDaR= 
s Width of the porous region 
S Dimensionless width of the porous region, s/d 
T Temperature 
u Horizontal velocity 
U Dimensionless horizontal velocity, ud/~f 
v Vertical velocity 

V Dimensionless vertical velocity, vd/0~ 
x Horizontal coordinate 
X Dimensionless horizontal coordinate, x/d 
y Vertical coordinate 
Y Dimensionless vertical coordinate, y/d 

Thermal diffusivity 
fl Coefficient of volumetric expansion 
F Parameter in Equation 10 

Parameter in the source function in Equation 10 
)/ Parameter in the source function in Equation 10 
0 Dimensionless temperature, (T-  Tc)/(Th- T=) 
r Permeability 
/~ Dynamic viscosity 
p Density of the fuid 

Intensive variable in Equation 10 
~b Dimensionless stream function 
co Underrelaxation parameter 
f~ Dimensionless vorticity 

Subscripts 
c Cold wall 
f Fluid 
h Hot wall 
m Mean 
p Porous medium 
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where R= = kf/kp. Note that Rao, Ra, Da, and R= are related by 

aaofmavaR. (8) 
and hence only ~ of these parameters are independent. 

The heat t r a m ~  re~lts are presented in terms of the Nnsselt 
number (Nu), ddned  as the ratio of the actual heat ~ r  
acrou the enclmure to the heat transfer by conduction when 
the entire enclosure is filled with the fluid only. In terms of the 
variables, it is 

Nu(x)f--~ff(~-~Ox-OU)d¥ (9) 

where 

R=R©, O=Op, U--Up forX~<S 

R = I ,  0ffi0r,  UfUf forX~>S 

M e t h o d  o f  s o l u t i o n  

Equations 1 through 6 were solved numerically using a finite- 
difference method. The momentum and energy equations were 
expressed in a canonical form as followstg: 

o~[Uc~-F O~b-]-~J+~-~O [V~-V ~y]f~c~+t] (10) 

This form of two-dimensional equation describes the conser- 
vation of any intensive dimensionless property 0 in the control 
volume approach. The respective velocities in X and Y directions 
are U and V, and ~0+q is a linear source term. Equations 1, 
3, 4, and 6 were cast into the above form with ~b corresponding 
to either f~ or 0 and F corresponding to either Pr or l/Rc, 
respectively. There is no source term in the energy equation. 
The source term in the momentum equation for the porous 
region is a combination of the Darcy resistance and buoyancy 
terms with ~ and q representing - Pr/Da and RaPr, respectively. 
The source term for the fluid region consists of the buoyancy 
term only and q corresponds to RaPr. The partial derivatives 
at the interior nodes were discretized by using the mesh control 
volume scheme and the power law. t9 The power-law scheme 
is used because it has been shown to predict the heat and fluid 
flow characteristics in a very realistic manner for all ranges of 
grid Peclet numbers. 

The momentum, energy and the ~-fl equations were solved 
using the Ganss-Seidel iterative method. The discretized differ- 
ence equations were arranged in a tridiagonal matrix form. The 
Thomas algorithm 2° and line-by-line scheme 21 were employed 
to solve the equations for the downstream values. Different 
expressions for the vorticity at the boundary have been examined 
in the past. 22 Here a second order expression was adapted, 

f~i_7O~-8Oi+l +0i+2 FO(An2 ) 
2(An 2) 

where i denotes the boundary node and An is the spatial interval 
in the direction normal to the boundary. 

The entire enclosure was divided into a (MI+M2)xN 
uniform grid system. M1 and M2 are the numbers of intervals 
in the X direction in the porous and fluid regions, respectively, 
and N is the number of intervals along the Y direction. The 
stagnant conditions were used as the initial guess and 0, #, and 
f~ were iterated at every grid point until covergence was 
obtained. For higher Ra, the values of 0, q/, and t~ for lower 
Ra were used as the initial guess to achieve faster convergence. 
The convergence criterion was set such that the iterations 
continued until the change in O, ~, and f~ at all the grid points 
was less than 0.01%. 

All the results presented are for a (24 + 24) x 32 grid. It was 
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found that after halving the mesh size (using a (48+48)x64 
grid) the Nusselt numbers changed by less than 2.5%. The 
Nusselt numbers at the hot wall, cold wall and the interface 
were examined for energy balance and they were found to be 
within 0.5% of one another in all of the cases considered. The 
Nusselt numbers to be presented are those for the hot wall. 

A word should be added about the overall numerical stability. 
Although the power law is stable for a single region problem 
(i.e., pure fluid region or pure porous region), the overall 
numerical iteration may be unstable due to the introduction of 
the matching conditions at the interface. A permeable interface 
introduces the Darcy resistance, V/Da, in one of the interface 
matching conditions, Equation 7. For Da<10 -s, this term 
becomes large enough to cause numerical instability. Thus, for 
Da lower than 10 -2, substantial underrelaxation had to be 
employed for Equation 7 so that 

~ . + 1  __ . . 4 " , a +  1 / 2  ± ( 1  - -  CO)g'~7, co = 0.1 i ~ w a a  I 7 -  

where n + 1/2 signifies an intermediate value before relaxation, 
co detlotes an underrelaxation parameter and i denotes the 
interface node. It was found that increasing underrelaxation 
parameter for D~ to 0.5 resulted in significantly faster convergence 
at values of Da higher than 10- 5. 

R e s u l t s  a n d  d i s c u s s i o n  

The governing parameters are Ra, Da, A, R=, S, and Pr. The 
value 0.7 was used for Pr for all the calculations. This value 
approximates that for air at room temperature. Different values 
for the other parameters were used in order to establish their 
effects. Before the results are presented, the comparisons 
conducted to validate the computer code will be examined. 

Comparisons with other results 

Table 1 shows the comparison of Nu for various values of'S. 
The results for S=O (Table l(a)) agree to within 5% with those 
presented by Tong and Subramanian. ts The differences are 
attributed to the different discretization methods and the 
different grid sizes employed. Tong and Subramanian 15 used 
central differences and larger grid sizes. The agreement with 
the results by Raithby and Wong ~ is better than 1% except the 
case for A= 10 and Raffi 1 u 105 where the agreement is 3%. 
Beckermann et al. ~ have analyzed a similar problem for the 
case ofA = 1. The comparison with their results (Table l(b)) for 
Sffi0.25, 0.5, and 0.75 show agreements within 7%. Beckermann 
et al. 17 presented their results in a graph and some errors might 
have been introduced in reading the graph. For S= 1, the 
comparison is in Table 1(c). The present results match with those 
of Tong and Subramanian ~s better than 4%. Note that the 
results from Shiralkar et al.13 are for pure Darcy formulation 
and hence their Nu are all higher (by about 3 %) than the present 
values. 

Comparisons with experimental results 

Experimental measurements were also conducted to validate 
the present numerical model. The experiments were conducted 
by Tong and Sathe as a continuation of a previous study 16 for 
natural convection in partially porous enclosures with an 
impermeable partition separating the fluid and porous regions. 
The experiments were carried out in exactly the same fashion as 
described in Ref. 16 except that the impermeable partition was 
removed from the enclosure. A foam plastic was used as the 
porous material and distilled water was used as the fluid. Flow 
visualization was performed by seeding the fluid region with 
shiny natural pearl essence particles and shining a narrow beam 
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Table I ComparisonofNu: (a)S=O, Da=lO-S, Rc=l; (b)A=l, 
Ra=I(P, Da=10 -~, R e = l ;  and (c) S=1,  Da= lO  -~, R==I  

Nu 

Tong and Raithby and 
A Rax 10 -(  Present Subramanian TM Wong a 

5 1 1.987 1.945 2.00 
5 10 3.714 3.580 3.68 

10 1 1.681 1.614 1.67 
10 10 3.230 3.067 3.13 

(a) 

Nu 

S Present Beckermann et el. ~7 

0.25 3.604 3.4 
0.50 3.348 3.2 
0.75 3.101 2.9 

(b) 

Nu 

Tong and Shiralkar 
A Ra o Present Subramanian TM et al. TM 

5 50 1.459 1.42 
5 100 2.033 1.95 2.09" 

10 50 1.21 3 1.20 1.25' 
10 100 1.524 1.48 1.57* 

* Based on pure Darcy formulation, i.e., Da=0. 

(c) 

Table 2 Comparison with experimental results: A = 5, 
Da=3.674 x 10- ' ,  S=0,5,  Rc=1.01 

Nu 

Ra x 10 -s Pr Present numerical Experimental 

6.01 6.72 3.796 3.52 
4.03 6.53 3.224 3.34 
3.33 6.82 2.986 2.81 

/ 

! 

i 

Figure 2(a) Comparison of the predicted streamlines with photo- 
graphed f low pattern for A = 5, Rc = 1.01, Da = 3.674 x 10 -(, S = 0.5, 
Ra = 6.01 x 10 =, and Pr = 6.72 

of light through a slit from the top of the enclosure. The 
predicted streamlines and the actual flow pattern are presented 
in Figure 2. There is a good qualitative agreement between the 
calculated and experimentally observed flow patterns. Shown 
in Table 2 are the predicted and experimentally measured Nu. 
The agreement ranges from 4 to 7%. Based on the comparisons 
presented, it was concluded that the numerical model could 
accurately predict heat and fluid flow in partially porous 
enclosures with a permeable interface. 

Ef fec t  o f  Ra 

Attention is now given to the effects of the governing parameters. 
Plots of Nu versus S are used to illustrate these effects. 
Demonstrated in Figure 3 is the effect of Ra for A = 5. As 

expected, higher Ra result in higher Nu. For  a given Ra, the 
resistance to the flow increases as S is increased. The intensity 
of convection is reduced and results in lower Nu. For  Ra = l0 5 
and R a =  10 6, the reduction in Nu for S increasing from 0.3 to 
0.8 is very small, indicating no appreciable gain in insulation 
effect for these conditions. For  R a =  10 3, almost all the con- 
vection is suppressed when S ~> 0.3. 

Effect of A 

As illustrated in Figure 4, Nu decreases as A increases. This is 
a result of increasing slenderness that has the effect of suppressing 
convective motion. As noted before, Nu remain almost constant 
when S is between 0.3 and 0.8. This fiat portion of the curve 
spans over a smaller range of S as A increases. 
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Figure 2(b) Comparison of the predicted streamlines wi th photo- 
graphed f low pattern for A = 5, Rc = 1.01, Da = 3.674 x 1 0 - t  S = 0.5, 
Ra--3.33 x 10 ~, and Pr= 6.82 

Effect of  Da 

Figure 5 shows Nu versus S for various Da. Changing Da from 
10 -2 to 10 -3 and from 10 -3 to 10 -4 produces a larger drop 
in Nu as compared to changing Da from 10 -4 to 10 -s .  For  
Da = 10- s almost all the convection is suppressed when S/> 0.7. 

Effect o f  Rc 

Shown in Figure 6 is Nu versus S for various R=. For  a given 
A, Nu depends on the intensity of convection in the enclosure 
and R~. The intensity of convection decreases monotonically 
as S is increased from 0 to 1, owing to increasing resistance to 
flow. When R= > 1 or R= = 1, conduction through the enclosure 
decreases or remains the same respectively, as S changes from 
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Figure 4 Effect of A on the variation of Nu versus S for Ra = I 0  e, 
R e = l ,  D a = 1 0  -~ 

0 to 1. Therefore, the combined effect of convection and 
conduction is a monotonic decrease in the total heat transfer 
when R=/> 1. However, as shown in the figure, a minimum in 
the total heat transfer is possible if R= < 1. This is because the 
fluid is being replaced by a better conducting material as S 
increases. The minimum occurs when the decrease in convection 
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Figure 6 Effect of R, on the variation of Nu veraus S for Ra = 1 O’, 
A=lO, Da=lO_* 

is offset by the increase in conduction. Note that in real 
situations the fluid is usually a gas and consequently, R, falls 
in range of one or less. The results for R,> 1 are included 
primarily for completeness. 

Permeable versus impermeable interface 
Figures 7 and 8 show a comparison with the results obtained 
earlier for a partially porous enclosure with an impermeable 

interface.rs The heat tram& across the enclosure is quite 
d&rent for the two casea shown except at the limiting cases 
of S =0 or 1. As expaeted, the Nu for enclosures with an 
impermeable partition is always lower than that for enclosures 
with a permeable interface. Note that for the conditions 
considered, Nu exhibited a minimum for the case of impermeable 
interface. The reason for the occurrence of a minimum Nu when 
the interface is impermeable has been given elsewhere.” 

Critical R, 

As already demonstrated, heat transfer across the enclosure 
may be minimized as a function of S when R, < 1. However, 
the condition R, c 1 is a necessary but insufficient condition 
for minimixing heat transfer as a function of S. By using a 
half-interval search method with an accuracy of &0.00625, the 
critical R, for Pr = 0.7 and different combinations of Ra, Da, 
and A have been determined and presented in Table 3. For a 
given set of Ra, A, and Da, a minimum Wu can be realii if 
the actual R, is less than the critical R, shown in the table. It 
should be noted that low Da and low Ra results in critical R, 
close to 1, while high Da and high Ra produces smaller R,. For 
the same Ra and Da the critical R, for A-10 is larger than 
that for A= 5. 

Conclusions 

Natural convective heat transfer in two-dimensional re&ngular 
enclosures has been studied. The enclosures were $utially !Ykd 
with a vertical porous layer, and had isothermal vertical and 
adiabatic horizontal walls. The fluid-porous interface was 
permeable. The governing equations were solved using a 
power-law finite-difference method. 

The present numerical results agreed well with experimental 
results and with those available in the literature. The Nu for 
wide ranges of Ra, Da, and A have been obtained. The results 

- lMP+tEA&E INTERFACE 
3.75 - - - PERMEABLE INTERFACE 

1.25 - 

Loo ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.0 

S 
Figure 7 Comparison of Nu for encloauree with and without 
impermeable partition for Ra = 1 (P, Da = lO_J, R, = 1 
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Tab le  3 Critical R= 
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Critical R c 

A Da R a = l  x l 0  = 5 x 1 0  a 1 x l ( P  5 x l ( P  1 x l 0  = 5 x 1 0  = 1 x l 0 "  

5 1 x 10  -= 0.99375 0.95625 0.88125 0.64375 0.54375 0.53125 0.53125 
1 x 1 0 - '  0.99375 0,99375 0.98125 0.86875 0.70625 0.55625 0.54375 
1 x 10 -s 0.99375 0.99375 0.99375 0.98750 0.98125 0.80625 0.59375 

10 1 x 10 -~ 0,99375 0,99375 0,88750 0,66875 0.56875 0.55000 0.54375 
1 x 1 0 - '  0.99375 0.99375 0.98750 0.98750 0.84375 0,58750 0.56875 
1 x 10 -6 0.99375 0,99375 0.99375 0,99375 0,99375 0.90000 0.73750 
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S 

Figure 8 Compar ison of Nu for enclosures wi th  and wi thout  
impermeable part i t ion for Ra = 1 (P, Da = 10-z, A = 10 

showed considerably higher rate Of heat transfer when compared 
with those for the porous and fluid regions separated with an 
impermeable part i t ion.  It  was found that for certain values of 
the govern ingparameters  heat transfer across the enclosure 
could be minimized by partially filling the enclosure with a 
porous material~ indicating a better optimized insulation usage 
is possible. By using a half-interval search method, the critical 
values of R= for the existence of a min imum Nu  were determined. 
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